

PREM CHAND MARKANDA S.D. COLLEGE FOR WOMEN, JALANDHAR CITY

Re-accredited 'A+' grade (2nd Cycle) by NAAC Bangalore

A unique prestigious Post Graduate Institution of Northern India

Department of Physics

ODD SEMESTER

B.Sc. Non - Medical

Session-2023-2024

Semester- Sem 1

Faculty Name-Miss. Mehak

Subject- – Mechanics

DURATION	ТОРІС	TEACHING TOOLS
DURATION July-August	TOPICIntroduction-Cartesianand spherical polar co-ordinate systems, area,volume, velocity andAcceleration in thesesystems.Conceptual Frame WorkSolid angle, Relationshipof conservation laws and	TEACHING TOOLS Lecture based teaching learning (chalk and talk) Demonstration
	symmetries of space and time.	

September	Introduction and Conceptual Frame Work: Various forces in Nature (Brief introduction) centreof mass, equivalent one body problem, central forces, equation of motion under central force, equation of orbit and turning points. Kepler Laws. Concept of Ether and Michelson son– Morley experiment.	Lecture based teaching (chalk and talk) Group discussion learning Any other (quiz)
October	IntroductionandConceptual Frame Work:Inertial frame of reference.GalileanGalileantransformationandInvariance.NonInertialframes,coriolisforceanditsapplications.Variationofaccelerationduetogravitywithlatitude.Focaultpendulum.	Lecture based teaching learning (chalk and talk) Practical based learning (you tube videos on different topics) Self study (library visit)
November	Elastic collision in Lab and C.M. system, velocities, angles and energies, crosss section of elastic scattering, Rutherford scattering. Rigid Body motion; Rotational motion, principal moments and Axes. Euler's equations, precession and elementary gyroscope.	Lecture based learning (chalk and talk) Practicle based learning Individual learning

CO.1	Understand Newton's laws of motion and motion of variable mass system and its
	application to rocket motion and the concepts of impact parameter, scattering cross
	section.
CO.2	Apply the rotational kinematic relations, the principle and working of gyroscope and
	it applications and the precessional motion of a freely rotating symmetric top.
CO.3	Comprehend the general characteristics of central forces and the application of
	Kepler's laws to describe the motion of planets and satellite in circular orbit through

	the study of law of Gravitation.
CO.4	Understand postulates of Special theory of relativity and its consequences such as
	length contraction, time dilation, relativistic mass and mass-energy equivalence.
CO.5	Examine phenomena of simple harmonic motion and the distinction between
	undamped, damped and forced oscillations and the concepts of resonance and
	quality factor with reference to damped harmonic oscillator.

B.Sc. non-medical

Semester-Semester-I

Faculty Name- Dr. Jyoti Sharma

Subject- ELECTRICITY AND MAGNETISM

DURATION	ТОРІС	TEACHING TOOLS
July-August	Basic ideas of Vector Calculus	Lecture based teaching learning
	Gradient, Divergence, curl and	(chalk and talk)
	their physical significance.	Any other (assignments)
	Laplacian in rectangular,	
	cylindrical and spherical	
	coordinates. Coulomb's Law	
	for point charges and	
	countinuous distribution of	
	charges. Electric field due to	
	dipole, line charge and sheet of	
	charge. Electric flux, Gauss's	
	Law and its applications.	
	Gauss's divergence theorem	
	and differential form of	
	Gauss's Law. Green's theorem.	
September	Work and potential difference.	Lecture based teaching learning
	Potential difference as line	(chalk and talk)
	integral of field. Electric	Group discussion
	potential due to a point charge,	
	a group of point charges,	
	dipole and quadrupole	
	moments, long uniformly	
	charged wire, charged disc.	
	Stoke's theorem and its	
	applications in Electrostatic	
	field, curl E=0. Electric fields	
	as gradient of scalar potential.	
	Calculation of E due to a point	
	charge and dipole from	

	potential. Potential due to arbitrary charge distribution and multipole moments.	
October	Poisson and Laplace's equation and their solutions in Cartesian and spherical coordinates. Concept of electrical images. Calculation of electric potential and field due to a point charge placed near an infinitely conducting sheet.Current and current density, equation of continuity. Microscopic form of Ohm's Law (J= σ E) and conductivity, Failure of Ohm's Law.	Lecture based teaching learning (chalk and talk) Technology based learning Self study(library visit)
November	Interaction between moving charges and force between parallel currents. Behaviour of various substances in magnetic field. Definition of M and H and their relation to free and bound currents. Permeability and susceptibility and their interrelationship. Orbital motion of electrons and diamagnetism, Para- magnetism and Ferromagnetism.	Lecture based learning(chalk and talk) Learning through problem solving(numericals) Individual learning

CO.1	Understand the Gauss law and its application to obtain electric field in different
	cases and formulate the relationship between electric displacement vector, electric
	polarization, Susceptibility, Permittivity and Dielectric constant.
CO.2	Distinguish between the magnetic effect of electric current and electromagnetic
	induction and apply the related laws in appropriate circumstances.
CO.3	Understand Biot and Savart's law and Ampere's circuital law to describe and explain
	the generation of magnetic fields by electrical currents.
CO.4	Develop an understanding on the unification of electric and magnetic fields and

	Maxwell's equations governing electromagnetic waves.				
CO.5	Apply law such as Bio t - Savart's and Lenz's law for selected problems in				
	electricity and magnetism.				

Semester-Semester- 3rd

Faculty Name- Miss. Mehak

Subject- STATISTICAL PHYSICS & THERMODYNAMICS

DURATION	ΤΟΡΙϹ	TEACHING TOOLS
July-August	Basic ideas of Statistical	Lecture based learning(chalk and
	Physics, Scope of	talk)
	Statistical Physics, Basic	Group teaching and learning
	ideas about probability,	
	Distribution of four	
	distinguishable particles	
	into compartments of equal	
	size. Concept of	
	macrostates, microstates,	
	Thermodynamic	
	Priobability, Effects of	
	constraints on the system.	
	Distribution of particles in	
	two compartments.	
	Deviation from the state of	
	maximum probability.	
	Equilibrium state of	
	dynamic system.	
	Distribution of	
	distinguishable n particles	
	in k compartments of	
	unequal sizes.	
September	Phase space and division	Lecture based teaching learning
	into elementary cells.	Chalk and talk
	Three kinds of statistics.	Any other (seminars)
	The basic approach in three	Self study
	statistics. Maxwell	
	Boltzman (MB) statistics	
	applied to an ideal gas in	
	equilibrium. Experimental	
	verification of law of	
	distribution of molecular	
	speeds. Need for Quantum	
	Statistics – B.E. Statement	

	of planck's law of	
	Radiation Wien's	
	Displacement and Stefan's	
	law. Fermi Dirac (FD)	
	statistics. Comparison of	
	MB BE and FD	
	statistics	
October	Statistical definition of	Lecture based teaching learning
	entropy Change of entropy	Chalk and talk
	of system additive naturne	Any other (class tests)
	of system, additive naturwe	Colf study
	of entropy, Law of increase	Self study
	of entropy, Reversible and	
	irreversible processes, and	
	their examples, work done	
	in reversible process,	
	examples of increase in	
	entropy in natural	
	processes, entropy and	
	disorder, Brief review of	
	Terms, Laws of	
	Thermodynamics. Carnot	
	Cycle. Entropy changes in	
	carnot cycle. Applications	
	of thermodynamics to	
	thermoelectric effect	
	change of entropy along	
	reversible path in P-V	
	diagram Haat doath of	
	unagrani. Treat death of	
Neuropeleen	Devicestice of Merrorall	
November	Derivation of Maxwell	Challs and talls
	Thermodynamics relations,	
	Cooling produced by	Any other (class tests.)
	adiabatic stretching,	Self study
	Adiabatic Compression,	
	change of internal energy	
	with volume, Specific heat	
	and constant pressure and	
	constant volume	
	Expression for CD Cy	
	Change of state	
	Change of state and	
	Claypron equation.	

CO.1	Understand the basic aspects of kinetic theory of gases, Maxwell-Boltzman		
	distribution law, equipartition of energies, mean free path of molecular collisions		
	and the transport phenomenon in ideal gases.		
CO.2	Gain knowledge on the basic concepts of thermodynamics, the first and the second		
	law of thermodynamics, the basic principles of refrigeration, the concept of		
	entropy, the thermodynamic potentials and their physical interpretations.		
CO.3	Understand the working of Carnot's ideal heat engine, Carnot cycle and its		
	efficiency.		
CO.4	Develop critical understanding of concept of Thermodynamic potentials, the		
	formulation of Maxwell's equations and its applications.		
CO.5	Differentiate between principles and methods to produce low temperature and		
	liquefy air and also understand the practical applications of substances at low		
	temperatures.		

Semester-Semester- 3rd

Faculty Name- Dr. Jyoti Sharma

Subject- OPTICS AND LASERS

DURATION	ТОРІС	TEACHING TOOLS
July-August	Interference of Light:	Lecture based learning(chalk and
	Superposition of light waves	talk)
	and interference, young's	Group teaching and learning
	double slit experiment,	
	Conditions for sustained	
	interference pattern,	
	Coherent sources of light,	
	Interference pattern by	
	division of wave front,	
	Fresnel Biprism,	
	Displacement of fringes,	
	Change of phase on	
	reflection, Interference in	
	thin films due to reflected	
	and transmitted light, non	
	reflecting films, Newton's	
	Rings. Michelson	
	Interferometer.	

September	Diffraction:Huygen'sfresnel	Lecture based teaching learning
	theory, half-period zones,	Chalk and talk
	Zone plate, Distinction	Any other (seminars)
	between fresnel and	Self study
	fraunhoffer diffraction.	
	Fraunhoffer diffraction at	
	rectangular and circular	
	apertures, Effect of	
	diffraction in optical	
	imaging, Resolving power	
	of telescope in diffraction	
	grating, its use as a	
	spectroscopic element and	
	its resolving power.	
	Resolving power of	
	microscope.	
October	Polarization: Plane	Lecture based teaching learning
	Polarized light, Elliptically	Chalk and talk
	polarized light, wire grid	Any other (class tests.)
	polarizer. Sheet polarizer.	Self study
	Mauls' Law. Brewester Law.	•
	Polarization by reflection.	
	Scattering. Double	
	reflection. Nicol prism.	
	Retardation plates.	
	Production Analysis of	
	polarized light. Quarter and	
	half wave plates.	
November	Laser Fundamentals:	Lecture based teaching learning
	Derivation of Einstein	Chalk and talk
	relations. Concept of	Any other (class tests.)
	stimulated emission and	Self study
	population inversion	
	broadening of spectral lines	
	three level and four level	
	laser schemes elementary	
	theory of optical cavity	
	Longitudinal and transverse	
	Longitudinar and transverse	
	devices components of laser	
	action types of larger D	
	action, types of lasers, Ruby	
	and No. YAG lasers, He-Ne	
	and CO2 lasers construction,	
	mode of creating population	
	inversion and output	

characteristics, application
of lasers –a general outline.

CO.1	Understand the phenomenon of interference of light and its formation in (i) Lloyd's
	single mirror due to division of wave front and (ii) Thin films, Newton's rings and
	Michelson interferometer due to division of amplitude.
CO.2	Describe the construction and working of zone plate and make the comparison of
	zone plate with convex lens.
CO.3	Explain the various methods of production of plane, circularly and polarized light
	and their detection and the concept of optical activity.
CO.4	Distinguish between Fresnel's diffraction and Fraunhoffer's diffraction and observe
	the diffraction patterns in the case of single slit and the diffraction grating.
CO.5	Comprehend the basic principle of laser, the working of He-Ne laser and Ruby
	lasers and their applications in different fields.

Semester-Semester- 5th

Faculty Name- Miss. Mehak

Subject- ELECTRONICS

DURATION	ΤΟΡΙϹ	TEACHING TOOLS
July-August	Concepts of current and	Lecture based teaching learning
	voltage sources, p-n	Chalk and talk
	junction, Biasing of diode,	Group discussion
	V-I characteristics,	
	Rectification: half wave,	
	full wave rectifiers and	
	bridge rectifiers,	
	Efficiency, Ripple factor,	
	Qualitative ideas of filter	
	circuits (LC and π filters),	
	Zener diode and voltage	
	regulation, Introduction to	
	Photonic devices (solar	
	cell, photodiode and LED).	
	Basic concepts of Boolean	
	algebra, AND OR NOT	
	and NAND Gates.	
September	Junction transistor :	Lecture based teaching learning

	Structure and working	Chalk and talk
	relation between different	Informational based videos (you
	currents in transistors. Sign	tube videos)
	conventions. Amplifying	Self study (library visit)
	action, Different	
	configurations of a	
	transistor and their	
	comparison, CB and CE	
	characteristics, Structure	
	and characteristics of	
	JEFT, Transistor biasing	
	and stabilization of	
	operating point, Voltage	
	divider biasing circuit.	
October	Working of CE amplifier,	Lecture based teaching learning
	Amplifier analysis using h-	Chalk and talk
	parameters, Equivalent	Informational based videos (you
	circuits, Determination of	tube videos)
	current gain, Power gain,	Any other (class test)
	Input impedance, FET	
	amplifier and its voltage	
	gain, Feed back in	
	amplifiers, Different types,	
	Voltage gain, Advantage of	
	negative feed back, Emitter	
	follower as negative feed	
	back circuit.	
November	Barkausen criterion of	Lecture based teaching learning
	sustained oscillations, LC	Chalk and talk
	oscillator (tuned collector,	Any other (assignment)
	tuned base Hartley), RC	Self study
	oscillators, phase shift and	
	Wein bridge.	

CO.1	Various network which use to solve problems related to complicated circuits by
	converting them into simpler circuits. This has wide applications in electronic and
	transmission circuits.
CO.2	Knowledge about semiconductors since it is a basic materials used in many
	electronic components like diode, transistors FET, UJT etc.
CO.3	Characteristics and working of operational amplifiers which are useful in various
	medical and scientific investigations to amplify the signals.
CO.4	Generation of high frequency signals using oscillator circuits and their applications.

Semester-Semester-5th

Faculty Name- Dr. Jyoti Sharma

Subject- CONDENSED MATTER PHYSICS

DURATION	ТОРІС	TEACHING TOOLS
July-August	Crystal structure, Symmetry operations for a two and three dimensional crystal, Two dimensional Bravais lattices, Three dimensional Bravais lattices, Basic primitive cells, Crystal planes and Miller indices, Diamond and NaCl structure.	Lecture based teaching learning Chalk and talk Group discussion
September	Crystal Diffraction: Bragg's law, Experimental methods for crystal structure studies, Laue equations, Reciprocal lattices of SC, BCC and FCC, Brag's law in reciprocal lattice, Brillouin zones and its construction in two and three dimensions, Structure factor and atomic form factor.	Lecture based teaching learning Chalk and talk Informational based videos (you tube videos) Self study (library visit)
October	Lattice vibrations, Concepts of phonons, Scattering of photons by phonons, Vibration and mono- atomic, linear chains, Density of modes, Einstein and Debye models of specific heat.	Lecture based teaching learning Chalk and talk Informational based videos (you tube videos) Any other (class test)

November	Free electron model of metals, Free electron, Fermi gas and Fermi energy, Band Theory: Kronig- Penney model, Metals and insulators, Qualitative discussion of the following: Conductivity and its variation with temperature in semiconductors, Fermi levels in intrinsic and extrinsic semiconductors, band gap in semiconductors	Lecture based teaching learning Chalk and talk Any other (assignment) Self study

CO.1	Understand basic mechanics and properties of matter and structure.
CO.2	Understand crystal structures and X-ray diffraction methods to analyze crystal
	structures
CO.3	Analyze crystal structures using Bragg's law, Laue equations, and experimental
	methods, understand reciprocal lattices and Brillouin zones, and evaluate structure
	and atomic form factors.
CO.4	Understand lattice vibrations, phonons, their role in thermal properties, scattering
	phenomena, vibrational modes in mono-atomic chains, and apply the Einstein and
	Debye models to analyze specific heat.
CO.5	Understand and analyze the electronic properties of materials using the Free
	Electron Model, Fermi gas, Band Theory (Kronig-Penney model), and
	semiconductor concepts such as conductivity variation, Fermi levels, and band gaps,
	to differentiate between metals, semiconductors, and insulators and their
	applications.

EVEN SEMESTER

B.Sc. non - medical

Semester-Semester-2nd

Faculty Name- Miss. Mehak

Subject- RELATIVITY AND ELECTROMAGNETISM

DURATION	ΤΟΡΙϹ	TEACHING TOOLS
July-August	Postulates of special theory of relatively. Lorentz transformations, observer and viewer in relativity. Relativity of simultaneity, Length, Time, velocities. Relativistic Dopper effect. Variation of mass with velocity, mass–energy equivalence, rest mass in an inelastic collision, relativistic momentum & energy, their transformation, concepts of Minkowski space, four vector formulation.	Lecture based learning(chalk and talk) Group teaching and learning
September	Invariance of charge, E in different frames of references. Fiels of a point charge moving with constant velocity, Lorentz's force, Definition of B. Biot Savart's Law and its application to long straight wire, circular current loop and solenoid. Ampere's Circuital law and its application. Divergence and curl of B. Hall effect, derivation of Hall co– efficient. Vector potential, current– density and its applications. Transformation equation of E and B from one frame to another.	Lecture based teaching learning Chalk and talk Any other (seminars) Self study
October	Faraday's Law of EM induction, Displacement current, Mutual inductance and reciprocity theorem.	Lecture based teaching learning Chalk and talk Any other (class tests.) Self study

	Self inductance, L for solenoid, Coupling of Electrical circuits. Analysis of LCR series and parallel resonant circuits, Q–factor, Power consumed, power factor.	
November	Maxwell's equations their derivation and characterizations, E.M. waves and wave equation in a medium having finite permeability and permitivity but with conductivity σ). Poynting vector, Impedance of a dielectric to EM waves. EM waves in a conducting medium and Skin depth. EMwave velocity in a conductor and anomalous dispersion. Response of a conducting medium to EMwaves. Reflection and transmission of EM waves at a boundary of two dielectric media for normal and oblique incidence.	Lecture based teaching learning Chalk and talk Any other (class tests.) Self study

CO 1	Understand and apply the minimum of appendix relativity, including Lorentz
CO.1	Understand and apply the principles of special relativity, including Lorentz
	transformations, relativistic effects on time, length, and velocities, relativistic
	Doppler effect, mass-energy equivalence, and momentum-energy transformations,
	with insights into Minkowski space and four-vector formulation.
CO.2	Understand electromagnetic phenomena across reference frames, including charge
	invariance, electric and magnetic field transformations, Lorentz force, Biot-Savart
	and Ampere's laws, Hall effect, vector potential, and current density applications.
CO.3	Understand Faraday's law, displacement current, inductance concepts (self and
	mutual), and their applications, including the reciprocity theorem and circuit
	coupling.
CO.4	Understand Faraday's law, displacement current, inductance concepts (self and

	mutual), and their applications, including the reciprocity theorem and circuit coupling.
CO.5	Examine the behavior of EM waves at boundaries, including reflection, transmission, and dispersion in conducting and dielectric media for normal and
	oblique incidences.

Semester-Semester-2nd

Faculty Name- Dr. Jyoti Sharma

Subject- VIBRATION AND WAVES

DURATION	TOPIC	TEACHING TOOLS
July-August	Simply harmonic motion,	Lecture based learning(chalk and
	energy of a SHO.	talk)
	Compound pendulum.	Group teaching and learning
	Torsional pendulum	
	Electrical Oscillations	
	Transverse Vibrations of a	
	mass on string,	
	superposition of two	
	perpendicular SHMhaving	
	periods in the ration 1:1	
	and 1:2.	
September	Decay of free Vibrations	Lecture based teaching learning
	due to damping.	Chalk and talk
	Differential equation of	Any other (seminars)
	damped harmonic motion,	Self study
	types of motion, types of	
	damping. Determination of	
	damping co–efficient–	
	Logarithmic decrement,	
	relaxation time and Q-	
	Factor. Electromagnetic	
	damping (Electrical	
	oscillator).	
October	Differential equation for	Lecture based teaching learning
	forced mechanical and	Chalk and talk
	electrical oscillators.	Any other (class tests.)
	Transient and steady state	Self study
	behaviour. Displacement	
	and velocity variation with	
	driving force frequency,	
	variation of phase with	

	frequency, resonance.	
	Power supplied to an	
	oscillator and its variation	
	with frequency. Q- value	
	and band width. Q-value	
	as an amplification factor.	
	Stiffness coupled	
	oscillators, Normal co-	
	ordinates and normal	
	modes of vibration.	
	Inductive coupling of	
	electrical oscillators.	
November	Types of waves, wave	Lecture based teaching learning
	equation (transverse) and	Chalk and talk
	its solution characteristic	Any other (class tests.)
	impedance of a string.	Self study
	Impedance matching.	
	Reflection and	
	Transmission of waves at	
	boundary. Reflection and	
	transmission of energy.	
	Reflected and transmitted	
	energy coefficients	
	Standing waves on a string	
	of fixed length Energy of	
	vibrating string Ways and	
	group velocity.	

CO.1	Understand physical characteristics of SHM and obtaining solution of the oscillator		
	using differential equations		
CO.2	Calculate logarithmic decrement relaxation factor and quality factor of a harmonic		
	oscillator		
CO.3	Use figures to understand simple harmonic vibrations of same frequency and		
	different frequencies		
CO.4	Solve wave equation and understand significance of transverse waves		
CO.5	Solve wave equation of a longitudinal vibration in bars free at one end and also		
	fixed at both the ends		

Semester-Semester-4th

Faculty Name- Miss Mehak

Subject- ATOMIC AND MOLECULAR SPECTRA

DURATION	TOPIC	TEACHING TOOLS
January-February	Introduction to Atomic	Lecture based teaching learning
	Spectra: Observation of	(Chalk and talk)
	spectra, Types of spectra,	Group discussion
	Light sources, Spectral	
	analysis, Units in	
	spectroscopy, Bohr's	
	Theory, Spectral series,	
	Representation of spectral	
	lines by terms, Energy	
	level Diagram, Bohr's	
	correspondence Principle,	
	Ritz combination Rule,	
	Continuum at series limit,	
	Evidences in favour of	
	Bohr's Theory,	
	Experimental confirmation	
	of Bohr's theory, Frank-	
	Hertz Experiment.	
March	One Electrom Atomic	Lecture based teaching learning
	Spectra: Spectrum of	(Chalk and talk)
	Hydrogen atom, Line	Any other (assignment)
	structure, Normal Zeeman	
	effect, electron spin, Stern	
	Gerlach experiment, spin	
	orbit coupling, electron	
	magnetic moment, total	
	angular momentum,	
	Hyperfine structure,	
	examples of one electron	
	systems, anomalous	
	Zeeman effect, Lande g	
	factor (Sodium D-Lines).	
April	Many Electron System	Lecture based teaching learning
	Spectra:Exchange	(Chalk and talk)
	symmetry of wave	
	function, exclusion	
	principle, shells, subshells	
	in atoms, atomic spectra	
	(Helium), spectra of	
	alkaline earth atoms, LS	
	coupling, selection rules,	

	Regularities in atomic	
	spectra.	
May	DInteraction energy ideas,	Lecture based teaching learning
	X-ray spectra, Mosley law,	(Chalk and talk)
	Absorption spectra, Auger	
	effect, Molecular bonding,	
	Molecular spectra,	
	selection rules, symmetric	
	structure, Rotational	
	Vibrational, electronic	
	level and spectra of	
	molecules, Raman spectra.	
	Introduction to Raman	
	spectra.issolution of	
	Partnership Firms: Legal	
	Position, Accounting for	
	simple dissolution,	
	Applications of rule in case	
	of Garner Vs. Murray in	
	case of insolvency of	
	partner(s) (excluding	
	piecemeal distribution and	
	sale of a firm to a	
	company).	

CO.1	Describe theories explaining the structure of atoms and the origin of the observed		
	spectra.		
CO.2	Identify atomic effect such as Zeeman Effect and Stark Effect.		
CO.3	Explain the observed dependence of atomic spectral lines on externally applied		
	electric and magnetic fields.		
CO.4	Understand interaction energy concepts, X-ray spectra, Moseley's law, absorption		
	spectra, Auger effect, and molecular bonding, along with rotational, vibrational, and		
	electronic spectra of molecules, and Raman spectroscopy.		
CO.5	Study the dissolution of partnership firms, including legal aspects, accounting for		
	simple dissolution, and the application of the Garner vs. Murray rule in cases of		
	partner insolvency		

Semester-Semester- 4th

Faculty Name- Dr. Jyoti Sharma

Subject- QUANTUM MECHANICS

DURATION	TOPIC	TEACHING TOOLS
January-February	Formalism of Wave	Lecture based teaching learning
	Mechanics: Brief	Group discussion
	introduction to need and	
	development of quantum	
	mechanics, photoelectric	
	effect, Compton effect,	
	Wave particle duality, De	
	broglie hypothesis,	
	Uncertainity principle,	
	Guassian wave packet.	
	Operator correspondence.	
	Normalization and	
	probability interpretation	
	of wave function.	
	Superposition principle.	
March	Expectation value,	Lecture based teaching learning
	Probability current and	Informational based videos
	conservation of probability.	Any other (assignment)
	Admissibility conditions or	
	wave function. Ehrenfest	
	theorem. Eigen function	
	and eigen value. Operator	
	formalism. orthogonal	
	system. expansion in eigen	
	functions. Hermitian	
	operator, simultaneous	
	eigen function, equation of	
	motion.	
April	Application of	Lecture based teaching learning
F.	Schrodinger wave	Technology based learning
	equation to one	Self study(library visit)
	dimensional problems:	seminars
	Fundamental postulates of	
	wave mechanics.	
	Schrodinger's wave	
	equation for a free particle	
	and equation of a particle	
	subject to forces. One	
	dimensional step potential	

	for $E>V_0$, one dimensional step potential for $0. onedimensional potentialbarrier of finite height andwidth, Quantummechanical tunnellingeffect, particle in onedimensional box withinfinitely hard walls, onedimensional square well of$	
May	Application of Schrodinger equation to three dimensional problems: Free particle in three dimensional rectangular box, Eigen wave function, Eigen values of momentum, energy and degeneracy, three dimensional harmonic oscillator (Cartesian coordinates) wave function, energy levels, degeneracy, Schrodinger's wave equation in spherical polar co-ordinates, Schrodinger wave equation for spherically symmetric potential for hydrogen atom, wave function of H atom, solution of $R(r), \Theta(\theta)$), $\Phi(\phi)$ equations.	Lecture based learning Seminars Self study

CO.1	Students will be familiar with the main aspects of the historical development of		
	quantum mechanics and be able to discuss and interpret experiments that reveal the		
	wave properties of matter, as well as how this motivates replacing classical		
	mechanics with a wave equation.		
CO.2	Students will understand the central concepts and principles in quantum mechanics,		
	such as the Schrödinger equation, the wave function and its interpretation, the		

	uncertainty principle, the relation between quantum mechanics and linear algebra.		
	This includes an understanding of elementary concepts in statistics, such as		
	expectation values and variance.		
CO.3	Students will have developed an understanding of why both analytic and numerical		
	solutions are important in quantum mechanics, and have acquired experience in		
	using both types of methods on quantum mechanical problems.		
CO.4	Apply Schrödinger's wave equation to one-dimensional problems, including free		
	particles, potential step, finite potential barriers, quantum tunneling, and particle in a		
	box, to understand fundamental wave mechanics and quantum effects.		
CO.5	Extend Schrödinger's equation to three-dimensional problems, solving for eigen		
	functions, energy levels, and degeneracy in systems like the three-dimensional		
	harmonic oscillator and hydrogen atom using spherical polar coordinates.		

Semester-Semester-6th

Faculty Name- Dr. Jyoti Sharma

Subject- RADIATION AND PARTICLE PHYSICS

DURATION	TOPIC	TEACHING TOOLS
January-February	Interaction of Radiation	Lecture based teaching learning
	and Charged Particles	Group discussion
	With Matter: Energy loss	
	of electrons and positrons,	
	Positrons annihilation in	
	condensed media, Sopping	
	power and range of heavier	
	charged, derivation of	
	Bethe-Bloch formula,	
	interaction of gamma rays	
	with matter.	
March	Nuclear Radiation	Lecture based teaching learning
	Detection: Gas-filled	Informational based videos
	detectors, proportional and	Inquiry based learning
	Geiger-Mueller counters,	Kinesthetic learning
	Scintillation detectors,	Expeditionary learning
	semiconductor detectors,	
	Cherenkov effect, solid	
	state nuclear track	
	detectors, bubble	
	chambers, nuclear	

	emulsions.	
April	Accelerators: Accelerators, linear accelerators, cyclic accelerators: cyclotron, synchrocyclotron, betatron, electron and proton synchrotron, phase stability, colliding beam machines: introduction to Large Hadron Collider and Fermilab Tevatron.	Lecture based teaching learning Technology based learning Self study Expeditionary learning Kinesthetic learning
May	Elementary Particles: Historical introduction, fermions and bosons, particles and antiparticles, Classification of particles, types of interactions, electromagnetic, weak, strong interactions, gravitational interactions, Quantum numbers and conservation laws, isospin, charge conjugation, Introduction to quarks and qualitative discussion of the quark model, high energy physics units.	Lecture based learning Learning through problem solving Kinesthetic learning Individual learning

CO.1	Understand the energy loss mechanisms of electrons, positrons, and heavier charged
	particles, including positron annihilation and stopping power, with the Bethe-Bloch
	formula. Analyze the interaction of gamma rays with matter and their energy
	transfer processes.
CO.2	Understand the principles and applications of various nuclear radiation detectors,
	including gas-filled detectors, Geiger-Mueller counters, scintillation detectors,
	semiconductor detectors, and Cherenkov effect.
CO.3	Understand the principles and types of accelerators, including linear accelerators,
	cyclotrons, synchrocyclotrons, betatrons, and synchrotrons for electrons and
	protons, with a focus on phase stability.

CO.4	Explore advanced colliding beam machines, such as the Large Hadron Collider and
	Fermilab Tevatron, and their role in high-energy particle physics.
CO.5	Understand the classification of elementary particles into fermions and bosons,
	including particles and antiparticles, and their interactions (electromagnetic, weak,
	strong, and gravitational).

Semester-Semester-6th

Faculty Name- Miss Mehak

Subject- NUCLEAR PHYSICS

DURATION	TOPIC	TEACHING TOOLS
January-February	Nuclear Properties:	Lecture based teaching learning
	Constituents of nucleus,	
	non-existence of electrons	
	in nucleus, Nuclear mass	
	and binding energy,	
	features of binding energy	
	versus mass number curve,	
	nucleus radius, angular	
	momentum and parity,	
	nuclear moments: magnetic	
	dipole moment and electric	
	quadruple moment,	
	properties of nuclear	
	forces, Yukawa theory.	
March	Radioactive Decays:	Lecture based teaching learning
	Modes of decay of	Inquiry based learning
	radioactive nuclides and	Kinesthetic learning
	decay Laws, radioactive	
	series and displacement	
	law, radioactive dating,	
	constituents of Cosmic	
	rays, Alpha decay:	
	Gamow's theory of alpha	
	decay, barrier penetration	
	as applied to alpha decay,	
	Geiger Nuttal law, Beta	
	decays: β -, β + and electron	
	capture decays, Neutrino	

	hypothesis and its	
	detection, parity violation	
	in β decay, Gamma	
	transitions: Excited levels,	
	isomeric levels, Gamma	
	transitions, internal	
	conversion.	
April	Nuclear Reactions: Types	Lecture based teaching learning
	of nuclear reactions,	Technology based learning
	reactions cross section,	Self study
	conservation laws,	
	Kinematics of nuclear	
	reaction, examples of	
	nuclear reactions, Q-value	
	and its physical	
	significance, compound	
	nucleus, level width.	
May	Nuclear Models: Liquid	Lecture based learning
	drop model, semi-	Learning through problem solving
	empirical mass formula,	Kinesthetic learning
	condition of stability,	Individual learning
	evidence for nuclear magic	
	numbers, Shell Model,	
	energy level scheme,	
	angular momenta of	
	nuclear ground states,	
	parity and magnetic	
	moment of nuclear ground	
	states.	

CO.1	Demonstrate knowledge of fundamental aspects of the structure of the nucleus,
	radioactive decay, nuclear reactions and the interaction of radiation and matter.
CO.2	Discuss nuclear and radiation physics connection with other physics disciplines -
	solid state, elementary particle physics, radiochemistry, astronomy.
CO.3	Understand the types of nuclear reactions, reaction cross-sections, and the
	application of conservation laws in nuclear reactions.
CO.4	Analyze the kinematics of nuclear reactions, including the Q-value, its physical
	significance, and concepts like the compound nucleus and level width.
CO.5	Explore the Shell Model, energy level schemes, and the determination of angular
	momentum, parity, and magnetic moments of nuclear ground states.