

PREM CHAND MARKANDA COLLEGE FOR WOMEN, JALANDHAR CITY

Re-accredited 'A⁺' grade (2^{nd} Cycle) by NAAC Bangalore

A unique prestigious Post Graduate Institution of Northern India

COURSE OUTCOME

DEPARTMENT- PHYSICS

Name of the class- B.Sc. (Non Med), B.Sc.(C.Sc.)

Semester- 1st

Course/Paper name- Mechanics

After completing this course, the student will be able to –

((((()))))	Demonstrate the simple phenomenon concerning motion in our daily life.
((CD22A	Apply the conservation laws in many physical phenomenon.
((CD33F	Formulate the mathematical relations based on physical phenomenon.
(((0)44D	Demonstrate the ability to justify and explain their thinking and approach.
CO.5	Elaborate and explain the concept of relativity with applications.

DEPARTMENT- PHYSICS

Name of the class- B.Sc. (Non Med), B.Sc.(C.Sc.)

Semester- 1st

Course/Paper name- Electricity and Magnetism

After completing this course, the student will be able to -

CCCD11D	Students will be able to understand the concept of the electric force, electric field and electric potential for stationary charges
(((1))2 2A	They are able to calculate electric potential and electric field by using Gauss's law.
((10033F	Student will understand the dielectric phenomenon and effect of electric field on dielectric.
(((()))41D	Study the concept of magnetic field, magnetic field for steady currents using Biot-Savart's and Ampere's Circuital laws.
CO.5	Student will learn magnetic materials and its properties.

DEPARTMENT- PHYSICS

Name of the class- B.Sc. (Non Med), B.Sc.(C.Sc.) Semester- 2nd

Course/Paper name- Relativity and Electromagnetism After completing

this course, the student will be able to -

CO.1	Describe and understand the basic concepts underpinning electricity and magnetism such as potential and field.
CO.2	Understand the relationship between electric and magnetic fields.
CO.3	Calculate the electrostatic and magnetic fields produced by static and moving charges in a variety of simple configurations.
CO.4	Identify and apply appropriate theoretical techniques to solve a range of different problems in electromagnetism.
CO.5	Elaborate and explain the concept of relativity with applications.

DEPARTMENT- PHYSICS

Name of the class- B.Sc. (Non Med), B.Sc.(C.Sc.)

Semester- 2nd

Course/Paper name- Vibration and Waves

After completing this course, the student will be able to -

CO.1	Learn how a body oscillates without damping amplitude and what the necessary conditions are for it.
CO.2	Learn how we can set any object in the forced oscillations that is in continuous motion
CO.3	Doppler effect and its use in day-to-day life. Using these concept students can get ideas of expanding the universe.
CO.4	Studying sound concept we can understand why the sound of male and female are different and the reason behind it.
CO.5	Elaborate and explain the concept of waves with applications.

DEPARTMENT- PHYSICS

Name of the class- B.Sc. (Non Med), B.Sc.(C.Sc.)

Semester- 3rd

Course/Paper name- Thermodynamics and Statistical Physics After completing this course, the student will be able to -

CO.1	Understand important topics of thermodynamics and statistical physics.
CO.2	Develop critical thinking and appropriate problem solving skills.
CO.3	Solve quantitative problems pertaining to the course.
CO.4	Apply concepts learned in lecture to real-life problems and situations.
CO.5	Student learns the different laws of thermodynamics.

DEPARTMENT- PHYSICS

Name of the class- B.Sc. (Non Med), B.Sc.(C.Sc.)

Semester- 3rd

Course/Paper name- Optics and Laser

After completing this course, the student will be able to -

CO.1	Image formation related to geometrical optics, Deviation, Magnification.
CO.2	Different types of monochromatic and chromatic aberrations and Achromatic in lenses.
CO.3	Construction and working of Simple Microscope, Compound Microscope, Huygen's Eyepiece.
CO.4	Interference and diffraction of light, Formation of fringes, Resolution
CO.5	Concept of Polarization, Double refraction, Construction and working of Nicol Prism.

DEPARTMENT- PHYSICS

Name of the class- B.Sc. (Non Med), B.Sc.(C.Sc.)

Semester- 4th

Course/Paper name- Atomic and Molecular Spectra

After completing this course, the student will be able to -

CCQ.1 D	Describe theories explaining the structure of atoms and the origin of the observed spectra.
CO.2	Identify atomic effect such as Zeeman effect and Stark effect.
CICCR3 L	List different types of atomic spectra.
C CO4 4 E	Explain the observed dependence of atomic spectral lines on externally applied electric and magnetic fields.
CCC55 E	Explain different Laser used and make a comparison between them.

DEPARTMENT- PHYSICS

Name of the class- B.Sc. (Non Med), B.Sc.(C.Sc.)

Semester- 4th

Course/Paper name- Quantum Mechanics

After completing this course, the student will be able to -

CCQ.1 D	Introduction to Quantum Mechanics, Historical background, Matter Waves, Wave particle duality.
CO.2	Able to understand concepts of Phase and Group Velocity, Heisenberg's Uncertainty Principle.
	Physical Interpretation of Wave function, Schrödinger's Wave Equation, Eigen n and Eigen values.
C CQ4 4 E	Free Particle, One Dimensional and Three Dimensional Rigid Box, Potential Barrier.
CCC55 E	Hermition and other operators in Quantum Mechanics, Commutator brackets and concept of parity.

DEPARTMENT- PHYSICS

Name of the class- B.Sc.

Semester- B.Sc. (Non Med), B.Sc.(C.Sc.)

Course/Paper name- Electronics

After completing this course, the student will be able to -

CCCQ1.1	Apply mathematical problems and solutions in aspect of science and technology.
00022	Understand the value of mathematical proof.
C0C00.3	Assist, Assemble, Modify and Test electronic circuit in accordance with job requirements.
CCO44	Develop the advance experimental techniques based on electronics.
00055	Apply the mathematical tools to explain the electronics and allied phenomenon.

DEPARTMENT- PHYSICS

Name of the class- B.Sc. (Non Med), B.Sc.(C.Sc.)

Semester- 5th

Course/Paper name- Condensed Matter Physics

After completing this course, the student will be able to -

CCC011 s	Students will able to study difference between crystalline and amorphous material, crystal structures, miller indices, interplaner distances, interatomic forces and bonds. From this study students get to learn the basics of solid state physics.
CCO22 U chara	Students will understand Bragg's diffraction, Bragg's law. X-ray diffraction and characterization techniques. With the help of this knowledge students know the principles of structures determination by X-ray diffraction method. This would be helpful in performing experiments in nanotechnology.
	Students can understand electrical and thermal conductivity of free elctron in metals, Energy levels of free electrons in one and three dimensions. They will learn significance of Pauli's exclusion principle, theorem, Fermi energy, and Hall Effect and energy bands in materials.
(((1))34 D	Students can Describe and explain the behavior of permanent magnet including induced magnetism, behavior of paramagnetic, diamagnetic, ferromagnetic materials in terms of magnetic domain.
(((0)45 1.	Students can understand superconducting materials, their properties and technological applications of superconductivity.

DEPARTMENT- PHYSICS

Name of the Class – B.Sc. (Non Med), B.Sc.(C.Sc.)

Semester – 6th

Course/Paper name- Nuclear Physics

After completing the course, the student will be able to -

C CQ. 1	Understand about the powerful nuclear apparatus and applications.
00022	Explain about the structure of atom and the relevant theories.
00083	Formulate the simple equations regarding nuclear reactions.
00044	Study the hazards of radioactive radiation.
00055	Use nuclear energy in useful purpose.

DEPARTMENT- PHYSICS

Name of the Class – B.Sc. (Non Med), B.Sc.(C.Sc.)

Semester – 6th

Course/Paper name- Radiation and Particle Physics

After completing the course, the student will be able to -

000.1	Knowledge about Interaction of Radiation and Charged Particles With Matter.
00022	Student learnt by using accelerators we can produce high energy particle which can be used for research purpose
00083	Use of nuclear reactors to produce a huge amount of heat energy.